آیا فعالیت عصبی ریتمیک صرفاً ویژگیهای ریتمیک محیط را منعکس میکند یا یک مکانیسم محاسباتی اساسی مغز را منعکس میکند؟این بحث مجموعه ای از مطالعات تجربی هوشمندانه را در تلاش برای یافتن پاسخ ایجاد کرده است. در اینجا، ما استدلال میکنیم که این میدان توسط پیشبینیهای نوسانگرها که بیشتر بر اساس شهود هستند و نه مدلهای بیوفیزیکی سازگار با پدیدههای مشاهدهشده، مانع شده است. آنچه در ادامه میآید مجموعهای از مثالهای احتیاطی است که به عنوان یادآوری فرضیههای ما در تئوریهای توسعهیافته رفتار نوسانی است که توسط مطالعه نظری سیستمهای دینامیکی ارائه شدهاند. در نهایت، امید ما این است که این تمرین باعث شود که این حوزه کمتر به مسئله مبهم «نوسان یا نه» و بیشتر با مدلهای بیوفیزیکی خاص که به راحتی قابل آزمایش هستند، توجه کند.
نقل قول: Doelling KB, Assaneo MF (2021) نوسانات عصبی شروعی برای درک فعالیت مغز هستند تا پایان. PLoS Biol 19(5): e3001234. https://doi. org/10. 1371/journal. pbio. 3001234
تاریخ انتشار: 4 مه 2021
حق چاپ: © 2021 Doelling, Assaneo. این یک مقاله با دسترسی آزاد است که تحت شرایط Creative Commons Attribution License توزیع شده است، که اجازه استفاده، توزیع و تکثیر نامحدود در هر رسانه را می دهد، مشروط بر اینکه نویسنده و منبع اصلی درج شده باشند.
بودجه: نویسندگان هیچ بودجه خاصی برای این کار دریافت نکردند.
منافع رقابتی: نویسندگان اعلام کرده اند که هیچ منافع رقیب وجود ندارد.
مقدمه
نوسانات عصبی یک پدیده مهم در علوم اعصاب است. برای یک قرن، مفاهیم و نقش آنها تقریباً در هر حوزه و گونه شناختی مورد مطالعه قرار گرفته است. چرا تحقیقات در مورد نوسانات در این زمینه بسیار فراگیر است؟اول، زیرا به نظر میرسد رفتار نوسانی یکی از آن کلیتهای بسیار توهمآمیز عملکرد مغز است. در حالی که این ریتمها ممکن است در مقیاسهای زمانی مختلف رخ دهند، حضور آنها در مناطق و گونههای مغز بیشتر یک قاعده است تا استثنا [1]. دوم، دینامیک نوسانی به خوبی مورد مطالعه قرار گرفته است. مهندسان و فیزیکدانان مدتها قبل از اینکه دانشمندان علوم اعصاب به آنها علاقه مند شوند، نوسانگرها را برای ساخت و درک پدیده های فیزیکی مورد مطالعه قرار داده اند [2،3]. نگاهی دقیق به کار آنها می تواند علوم اعصاب را به سمت توضیح عملکرد عصبی و پیامدهای آن راهنمایی کند.
با وجود مزایای بالقوه ، به نظر می رسد که حداقل بخشی از این زمینه در یک حلقه گیر کرده است ، بحث در مورد اینکه آیا نوسانات عصبی هستند یا مفهوم مفیدی نیستند که شایسته مطالعه هستند. از یک طرف ، تمایل به جستجوی نوسانات (و اغلب پیدا کردن) در همه جا وجود دارد (شاید حتی در جایی که آنها نیستند). از طرف دیگر ، یک روند واکنشی وجود دارد که کلماتی مانند "Epiphenomenon" ، "پاسخ برانگیخته" و "دودهای اگزوز" را که به دنبال توضیح هرگونه یافته نوسان است (شاید حتی در صورت وجود) است ، وجود دارد. نتیجه این است که تلاش بیشتری برای بحث در مورد حضور یک نوسان صرف می شود تا اینکه از مزایای آن سود ببرد. این احساس ما ، به عنوان محققانی که مطمئناً در این بحث نقش داشته اند ، این است که بحث دیگر هیچ فایده ای ملموس برای این زمینه فراهم نمی کند. این امر به این دلیل است که زمینه را برای تعیین حضور یک نوسان به عنوان یک هدف نهایی رضایت بخش یک برنامه تحقیقاتی متمرکز می کند ، در عوض ، این فقط یک نقطه شروع است.
نمونه ای از این نوع گفتگو در حوزه گفتار و درک صدا ادامه دارد. در این زمینه ، داده های زیادی [4-9] شواهدی برای فعالیت ریتمیک تقریباً 4 هرتز در قشر شنوایی ارائه می دهد که ریتم های موجود در صدا را ردیابی می کند. این مقالات یک نوسان ساز عصبی را در قشر شنوایی که به محرکهای صوتی وارد شده است ، برای پشتیبانی از تعدادی از عملکردهای مهم شناختی در استماع مانند توجه [10] ، پیش بینی [11] و تقسیم بندی [12] پیشنهاد می کند. و با این حال ، ورودی خود ریتمیک است. شاید داده ها را می توان با یک سیستم منفعل توضیح داد که ریتمیتم به نظر می رسد فقط نشان دهنده ریتم ورودی است [13،14]. این سیستم غیرفعال به برخی از مکانیسم های اضافه شده (مانند تغییر منفی مشروط ، به عنوان مثال ، [15]) برای پشتیبانی از فرآیندهای مرتبه بالاتر متکی است. از چه پیش بینی هایی می توانیم استفاده کنیم تا این فرضیه ها را از هم جدا کنیم ، به ویژه هنگامی که ضبط های عصبی پیش بینی شده بسیار مشابه هستند؟
ما پیشنهاد می کنیم که این سوال در معرض آن قرار نگیرد. نوسانات ممکن است توسط هر تعداد وسیله ایجاد شود. احتمالاً ، هدف از تحقیقات ما مطالعه نه پدیده ها بلکه مکانیسم های اساسی آنها است. تجزیه و تحلیل اساسی در مورد چگونگی تولید نوسانات ، 2 نکته مهم را نشان می دهد: (1) خط بین نوسان و مبهم نیست-یک مدل ادغام و آتش نشتی هم نوسان ساز است و هم یک مدل از پاسخ های برانگیخته و (2) در آنجاناهمگونی بزرگی در مکانیسم های احتمالی آنها است که هرکدام منجر به رفتارها و پیش بینی های مختلف می شوند.
هدف ما این نیست که تصمیم بگیریم که آیا نوسان سازها نقش مهمی در عملکرد مغز دارند و یا بحث در مورد مزایای چنین مکانیسم. درعوض ، ما به دنبال این هستیم که خود را در نظریه های سیستم های پویا که به طور مفصل نوسانات را مورد مطالعه قرار داده اند ، دوباره بسازیم و اطمینان حاصل کنیم که پیش بینی ها و معیارهای ارزیابی که ما به عنوان یک زمینه با آنها موافقت می کنیم ، به اندازه کافی توجیه می شوند. ما این کار را با ارائه تعریف اساسی از یک نوسان ساز ، به طور کلی و با استفاده از معادلات ریاضی ساده انجام می دهیم که می تواند برای تولید پیش بینی های معتبر از رفتار آن استفاده شود. سپس ما از این مدل ریاضی برای آزمایش (و اغلب رد می کنیم) برخی از پیش بینی های متداول فرض شده استفاده می کنیم. سرانجام ، ما چارچوبی را برای تمرکز مجدد سؤالات به دور از حضور نوسان و به سمت ویژگی های بیشتر از انواع پویایی غیرخطی ارائه می دهیم که می تواند داده های عصبی و رفتاری را که ما مطالعه می کنیم به دست آورد.
نوسان ساز چیست؟
کلمه "نوسان ساز" به طور گسترده ای مورد استفاده قرار می گیرد اما در زمینه علوم اعصاب شناختی کاملاً تعریف شده است. استفاده از نامگذاری های مبهم برای توصیف گسترده رفتارهای مختلف به دور از بهینه نیست. درعوض ، ما پیشنهاد می کنیم تا تلاش های خود را برای درک مکانیسم های اساسی چنین رفتارهایی با ساختن مدلهای بیوفیزیکی که قادر به توضیح و/یا پیش بینی مشاهدات تجربی هستند ، تغییر مسیر دهیم. به خاطر این استدلال ، ما یک نوسان ساز را "سیستمی که قادر به ایجاد رفتار ریتمیک پایدار به خودی خود باشد" تعریف می کنیم. در اینجا ، ما به یک سیستم به معنای دینامیکی اشاره می کنیم ، به این معنی که رفتار مجموعه ای از متغیرها را می توان با مجموعه ای از معادلات دیفرانسیل تنظیم شده توسط مجموعه ای از پارامترها توصیف کرد. بنابراین ، با تأیید اینکه پارامترهای مختلف ممکن است رفتارهای متفاوتی داشته باشند ، ما سیستم هایی را شامل می شویم که رفتار ریتمیک خود تولید کننده در یک فضای پارامتر محدود رخ می دهد. سرانجام ، ما برجسته می کنیم که نوسان ساز می تواند ریتم را به خودی خود تولید کند. توجه داشته باشید که ما از یک سیستم خطی که فقط هنگام دریافت ورودی ریتمیک نوسان می کند ، جلوگیری می کنیم.
از دیدگاه ریاضی ، 4 روش مختلف وجود دارد که از طریق آن یک سیستم دو بعدی برای نوسان شروع می شود یا متوقف می شود-برای یک تحلیل دقیق در مورد چگونگی ایجاد نوسانات ، ما خواننده را دعوت می کنیم تا تجزیه و تحلیل های دقیق تر و کامل را مطالعه کند ، به عنوان مثال ، [[16،17]. در اینجا ، ما فقط به مشهورترین مورد توجه خواهیم کرد: Hop f-Andronov (HA) bifurcation [16]. در مجموعه ای از معادلات توصیف دینامیک 2 متغیر همراه ، یک تقسیم هکتار صورت می گیرد که با افزایش مداوم یا کاهش یک پارامتر ، سیستم از یک رژیم نوسان مرطوب به نوسانات پایدار تغییر می کند. به عنوان مثال ، در معادلات نشان داده شده در شکل 1A ، این تغییر کیفی در رفتار در λ = 0 صورت می گیرد: برای λ 0 ، نوسان نگه می دارد.